Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
ACS Nano ; 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324804

ABSTRACT

Copper phosphide (Cu3-xP) nanocrystals are promising materials for nanoplasmonics due to their substoichiometric composition, enabling the generation and stabilization of excess delocalized holes and leading to localized surface plasmon resonance (LSPR) absorption in the near-IR. We present three Cu-coupled redox chemistries that allow postsynthetic modulation of the delocalized hole concentrations and corresponding LSPR absorption in colloidal Cu3-xP nanocrystals. Changes in the structural, optical, and compositional properties are evaluated by powder X-ray diffraction, electronic absorption spectroscopy, 31P magic-angle spinning solid-state nuclear magnetic resonance spectroscopy, and elemental analysis. The redox chemistries presented herein can be used to access nanocrystals with LSPR energies of 660-890 meV, a larger range than has been possible through synthetic tuning alone. In addition to utilizing previously reported redox chemistries used for copper chalcogenide nanocrystals, we show that the largest structural and LSPR modulation is achieved using a divalent metal halide and trioctylphosphine. Specifically, nanocrystals treated with zinc iodide and trioctylphosphine have the smallest unit-cell volume (295.2 Å3) reported for P63cm Cu3-xP, indicating more Cu vacancies than have been previously observed. Overall, these redox chemistries present valuable insight into controlling the optical and structural properties of Cu3-xP.

2.
ACS Mater Lett ; 4(10): 1937-1943, 2022 Oct 03.
Article in English | MEDLINE | ID: mdl-36213253

ABSTRACT

We present the synthesis of metal oxide frameworks composed of the Preyssler anion, [NaP5W30O110]14-, bridged with transition-metal cations and infiltrated with polyethylene glycol. The frameworks can be dissolved in water to form freestanding rigid or flexible films or gels. Powder X-ray diffraction shows that all form-factors maintain the short-range order of the original crystals. Raman spectroscopy reveals that, similar to hydrogels, the macroscopic mechanical properties of these composites are dependent on the water content and the extent of hydrogen-bonding within the water network. The understanding gained from these studies facilitates solution-phase processing of polyoxometalate frameworks into flexible form factors.

3.
Nanoscale ; 13(41): 17465-17472, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34647940

ABSTRACT

We present a method for thephotochemical conversion of the inverse spinel iron oxides in which the mixed-valent magnetite phase (Fe3O4) is accessed from the maghemite phase (γ-Fe2O3) via a stable, colloidal nanocrystal-to-nanocrystal transformation. Anaerobic UV-irradiation of colloidal γ-Fe2O3 nanocrystals in the presence of ethanol as a sacrificial reductant yields reduction of some Fe3+ to Fe2+, resulting in a topotactic reduction of γ-Fe2O3 to Fe3O4. This reduction is evidenced by the emergence of charge-transfer absorption and increased d-spacing in UV-irradiated nanocrystals. Redox titrations reveal that ∼43% of Fe in = 4.8 nm nanocrystals can be reduced with this method and comparison of optical data indicates similar reduction levels in = 7.3 and 9.0 nm nanocrystals. Addition of excess acetaldehyde during photoreduction shows that the extent of reduction is likely pinned by the hydrogenation of acetaldehyde back to ethanol and can be increased with the use of an alkylborohydride sacrificial reductant. Photochemical reduction is accompanied by increased magnetization and emergence of magnetic features characteristic of Fe3O4. Overall, this work provides a reversible, post-synthetic strategy to obtain Fe3O4 nanocrystals with well-controlled Fe2+ compositions.

4.
Angew Chem Int Ed Engl ; 59(38): 16609-16615, 2020 Sep 14.
Article in English | MEDLINE | ID: mdl-32488927

ABSTRACT

The Preyssler polyoxoanion, [NaP5 W30 O110 ]14- ({P5 W30 }), is used as a platform for evaluating the role of nonbridging cations in the formation of transition-metal-bridged polyoxometalate (POM) coordination frameworks. Specifically, the assembly architecture of Co2+ -bridged frameworks is shown to be dependent on the identity and amount of alkali or alkaline-earth cations present during crystallization. The inclusion of Li+ , Na+ , K+ , Mg2+ , or Ca2+ in the framework synthesis is used to selectively synthesize five different Co2+ -bridged {P5 W30 } structures. The influence of the competition between K+ and Co2+ for binding to {P5 W30 } in dictating framework assembly is evaluated. The role of ion pairing on framework assembly structure and available void volume is discussed. Overall, these results provide insight into factors governing the ability to achieve controlled assembly of POM-based coordination networks.

5.
J Am Chem Soc ; 141(51): 20261-20268, 2019 12 26.
Article in English | MEDLINE | ID: mdl-31775506

ABSTRACT

We present the synthesis of metal oxide frameworks composed of [NaP5W30O110]14- assembled with Mn, Fe, Co, Ni, Cu, or Zn bridging metal ions. X-ray diffraction shows that the frameworks adopt the same assembly regardless of bridging metal ion. Furthermore, our synthesis allows for the assembly of isostructural frameworks with mixed-metal ion bridges, or with clusters that have been doped with Mo, providing a high degree of compositional diversity. This consistent assembly enables investigation into the role of the building blocks in the properties of the metal oxide frameworks. The presence of bridging metal ions leads to increased conductivity compared to unbridged frameworks, and frameworks bridged with Fe have the highest conductivity. Additionally, Mo-doping can be used to enhance the conductivities of the frameworks. Similar structures can be obtained from clusters in which the central Na+ has been replaced with Bi3+ or Sm3+. Overall, the optical and electronic properties are tunable via choice of bridging metal ion and cluster building block and reveal emergent properties in these cluster-based frameworks. These results demonstrate the promise of using polyoxometalate clusters as building blocks for tunable complex metal oxide materials with emergent properties.

6.
Chem Commun (Camb) ; 55(60): 8856-8859, 2019 Jul 23.
Article in English | MEDLINE | ID: mdl-31204745

ABSTRACT

Colloidal chemistry is leveraged for size- and phase-tuning of transition metal dichalcogenide nanomaterials. Specifically, nucleation and growth of colloidal WSe2 nanocrystals are controlled via mixtures of oleic acid (OA) and trioctylphosphine oxide. Increased OA yields slower nucleation, larger nanocrystals and a shift from the 2H to 1T' phase.

7.
J Am Chem Soc ; 141(11): 4553-4557, 2019 Mar 20.
Article in English | MEDLINE | ID: mdl-30827114

ABSTRACT

A new metal oxide framework based on the redox-active Preyssler anion linked with Co(H2O)42+ bridging units is presented. The framework can be photochemically reduced, allowing the storage of multiple electrons under mild conditions. Titrations with molecular redox species show that this reduction is reversible and can accommodate up to 10 electrons per Preyssler cluster (corresponding to an electron density on the order of 1021 cm-3) without changing the crystal structure. This addition of delocalized electrons is accompanied by a 1000-fold increase in the conductivity. These results demonstrate that the ability to add delocalized electrons to polyoxometalate clusters can be incorporated into self-assembled extended solids, enabling the development and tuning of metal oxide materials with emergent or complementary properties.

8.
J Phys Chem Lett ; 8(8): 1831-1836, 2017 Apr 20.
Article in English | MEDLINE | ID: mdl-28379708

ABSTRACT

A fundamental understanding of the rich electronic structures of electronically doped semiconductor nanocrystals is vital for assessing the utility of these materials for future applications from solar cells to redox catalysis. Here, we examine the use of magnetic circular dichroism (MCD) spectroscopy to probe the infrared localized surface plasmon resonances of p-Cu2-xSe, n-ZnO, and tin-doped In2O3 (n-ITO) nanocrystals. We demonstrate that the MCD spectra of these nanocrystals can be analyzed by invoking classical cyclotron motions of their excess charge carriers, with experimental MCD signs conveying the carrier types (n or p) and experimental MCD intensities conveying the cyclotron splitting magnitudes. The experimental cyclotron splittings can then be used to quantify carrier effective masses (m*), with results that agree with bulk in most cases. MCD spectroscopy thus offers a unique measure of m* in free-standing colloidal semiconductor nanocrystals, raising new opportunities to investigate the influence of various other synthetic or environmental parameters on this fundamentally important electronic property.

9.
J Am Chem Soc ; 138(4): 1377-85, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26730853

ABSTRACT

Charge carriers (electrons) were added to ZnO nanocrystals (NCs) using the molecular reductants CoCp*2 and CrCp*2 [Cp* = η(5)-pentamethylcyclopentadienyl]. The driving force for electron transfer from the reductant to the NCs was varied systematically by the addition of acid, which lowers the energy of the NC orbitals. In the presence of excess reductant, the number of electrons per NC (⟨ne(-)⟩) reaches a maximum, beyond which the addition of more acid has no effect. This ⟨ne(-)⟩max varies with the NC radius with an r(3) dependence, so the density of electrons (⟨Ne(-)⟩max) is constant over a range of NC sizes. ⟨Ne(-)⟩max = 4.4(1.0) × 10(20) cm(-3) for CoCp*2 and 1.3(0.5) × 10(20) cm(-3) for the weaker reducing agent, CrCp*2. Up until the saturation point, the addition of electrons is linear with respect to protons added. This linearity contrasts with the typical description of hydrogen atom-like states (S, P, etc.) in the conduction band. The 1:1 relationship of ⟨ne(-)⟩ with protons per NC and the dramatic dependence of ⟨Ne(-)⟩max on the nature of the cation (H(+) vs MCp*2(+)) suggest that the protons intercalate into the NCs under these conditions. The differences between the reductants, the volume dependence, calculations of the Fermi level using the redox couple, and a proposed model encompassing these effects are presented. This study illustrates the strong coupling between protons and electrons in ZnO NCs and shows that proton activity is a key parameter in nanomaterial energetics.

10.
J Phys Chem Lett ; 6(9): 1748-53, 2015 May 07.
Article in English | MEDLINE | ID: mdl-26263344

ABSTRACT

Colloidal diluted magnetic semiconductor (DMS) nanocrystals are model systems for studying spin effects in semiconductor nanostructures with relevance to future spin-based information processing technologies. The introduction of excess delocalized charge carriers into such nanocrystals turns on strong dopant-carrier magnetic exchange interactions, with important consequences for the physical properties of these materials. Here, we use pulsed electron paramagnetic resonance (pEPR) spectroscopy to probe the effects of excess conduction band electrons on the spin dynamics of colloidal Mn(2+)-doped ZnO nanocrystals. Mn(2+) spin-lattice relaxation is strongly accelerated by the addition of even one conduction band electron per Zn1-xMnxO nanocrystal, attributable to the introduction of a new exchange-based Mn(2+) spin relaxation pathway. A kinetic model is used to describe the enhanced relaxation rates, yielding new insights into the spin dynamics and electronic structures of these materials with potential ramifications for future applications of DMS nanostructures in spin-based technologies.

11.
J Am Chem Soc ; 137(34): 11163-9, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26263400

ABSTRACT

Electronically doped colloidal semiconductor nanocrystals offer valuable opportunities to probe the new physical and chemical properties imparted by their excess charge carriers. Photodoping is a powerful approach to introducing and controlling free carrier densities within free-standing colloidal semiconductor nanocrystals. Photoreduced (n-type) colloidal ZnO nanocrystals possessing delocalized conduction-band (CB) electrons can be formed by photochemical oxidation of EtOH. Previous studies of this chemistry have demonstrated photochemical electron accumulation, in some cases reaching as many as >100 electrons per ZnO nanocrystal, but in every case examined to date this chemistry maximizes at a well-defined average electron density of ⟨Nmax⟩ ≈ (1.4 ± 0.4) × 10(20) cm(-3). The origins of this maximum have never been identified. Here, we use a solvated redox indicator for in situ determination of reduced ZnO nanocrystal redox potentials. The Fermi levels of various photodoped ZnO nanocrystals possessing on average just one excess CB electron show quantum-confinement effects, as expected, but are >600 meV lower than those of the same ZnO nanocrystals reduced chemically using Cp*2Co, reflecting important differences between their charge-compensating cations. Upon photochemical electron accumulation, the Fermi levels become independent of nanocrystal volume at ⟨N⟩ above ∼2 × 10(19) cm(-3), and maximize at ⟨Nmax⟩ ≈ (1.6 ± 0.3) × 10(20) cm(-3). This maximum is proposed to arise from Fermi-level pinning by the two-electron/two-proton hydrogenation of acetaldehyde, which reverses the EtOH photooxidation reaction.


Subject(s)
Aldehydes/chemistry , Nanostructures/chemistry , Zinc Oxide/chemistry , Colloids/chemistry , Electrons , Ethanol/chemistry , Hydrogenation , Oxidation-Reduction , Photochemical Processes , Semiconductors
12.
J Phys Chem Lett ; 6(3): 457-63, 2015 Feb 05.
Article in English | MEDLINE | ID: mdl-26261963

ABSTRACT

Colloidal impurity-doped quantum dots (QDs) are attractive model systems for testing the fundamental spin properties of semiconductor nanostructures relevant to future spin-based information processing technologies. Although static spin properties of this class of materials have been studied extensively in recent years, their spin dynamics remain largely unexplored. Here we use pulsed electron paramagnetic resonance (pEPR) spectroscopy to probe the spin relaxation dynamics of colloidal Mn(2+)-doped ZnO, ZnSe, and CdSe quantum dots in the limit of one Mn(2+) per QD. pEPR spectroscopy is particularly powerful for identifying the specific nuclei that accelerate electron spin relaxation in these QDs. We show that the spin-relaxation dynamics of these colloidal QDs are strongly influenced by dipolar coupling with proton nuclear spins outside the QDs and especially those directly at the QD surfaces. Using this information, we demonstrate that spin-relaxation times can be elongated significantly via ligand (or surface) deuteration or shell growth, providing two tools for chemical adjustment of spin dynamics in these nanomaterials. These findings advance our understanding of the spin properties of solution-grown semiconductor nanostructures relevant to spin-based information technologies.

13.
Acc Chem Res ; 48(7): 1929-37, 2015 Jul 21.
Article in English | MEDLINE | ID: mdl-26121552

ABSTRACT

Electronic doping is one of the most important experimental capabilities in all of semiconductor research and technology. Through electronic doping, insulating materials can be made conductive, opening doors to the formation of p-n junctions and other workhorses of modern semiconductor electronics. Recent interest in exploiting the unique physical and photophysical properties of colloidal semiconductor nanocrystals for revolutionary new device technologies has stimulated efforts to prepare electronically doped colloidal semiconductor nanocrystals with the same control as available in the corresponding bulk materials. Despite the impact that success in this endeavor would have, the development of general and reliable methods for electronic doping of colloidal semiconductor nanocrystals remains a long-standing challenge. In this Account, we review recent progress in the development and characterization of electronically doped colloidal semiconductor nanocrystals. Several successful methods for introducing excess band-like charge carriers are illustrated and discussed, including photodoping, outer-sphere electron transfer, defect doping, and electrochemical oxidation or reduction. A distinction is made between methods that yield excess band-like carriers at thermal equilibrium and those that inject excess charge carriers under thermal nonequilibrium conditions (steady state). Spectroscopic signatures of such excess carriers, accessible by both equilibrium and nonequilibrium methods, are reviewed and illustrated. A distinction is also proposed between the phenomena of electronic doping and redox-potential shifting. Electronically doped semiconductor nanocrystals possess excess band-like charge carriers at thermal equilibrium, whereas redox-potential shifting affects the potentials at which charge carriers are injected under nonequilibrium conditions, without necessarily introducing band-like charge carriers at equilibrium. Detection of the key spectroscopic signatures of band-like carriers allows distinction between these two regimes. Both electronic doping and redox-potential shifting can be powerful tools for tuning the performance of nanocrystals in electronic devices. Finally, key chemical challenges associated with nanocrystal electronic doping are briefly discussed. These challenges are centered largely on the availability of charge-carrier reservoirs with suitable redox potentials and on the relatively poor control over nanocrystal surface traps. In most cases, the Fermi levels of colloidal nanocrystals are defined by the redox properties of their surface traps. Control over nanocrystal surface chemistries is therefore essential to the development of general and reliable strategies for electronically doping colloidal semiconductor nanocrystals. Overall, recent progress in this area portends exciting future advances in controlling nanocrystal compositions, surface chemistries, redox potentials, and charge states to yield new classes of electronic nanomaterials with attractive physical properties and the potential to stimulate unprecedented new semiconductor technologies.

14.
Biochemistry ; 54(5): 1198-207, 2015 Feb 10.
Article in English | MEDLINE | ID: mdl-25591012

ABSTRACT

Azoles and pyridines are commonly incorporated into small molecule inhibitor scaffolds that target cytochromes P450 (CYPs) as a strategy to increase drug binding affinity, impart isoform-dependent selectivity, and improve metabolic stability. Optical absorbance spectra of the CYP-inhibitor complex are widely used to infer whether these inhibitors are ligated directly to the heme iron as catalytically inert, low-spin (type II) complexes. Here, we show that the low-spin complex between a drug-metabolizing CYP2C9 variant and 4-(3-phenylpropyl)-1H-1,2,3-triazole (PPT) retains an axial water ligand despite exhibiting elements of "classic" type II optical behavior. Hydrogens of the axial water ligand are observed by pulsed electron paramagnetic resonance (EPR) spectroscopy for both inhibitor-free and inhibitor-bound species and show that inhibitor binding does not displace the axial water. A (15)N label incorporated into PPT is 0.444 nm from the heme iron, showing that PPT is also in the active site. The reverse type I inhibitor, LP10, of CYP125A1 from Mycobacterium tuberculosis, known from X-ray crystal structures to form a low-spin water-bridged complex, is found by EPR and by visible and near-infrared magnetic circular dichroism spectroscopy to retain the axial water ligand in the complex in solution.


Subject(s)
Aminopyridines/chemistry , Bacterial Proteins/chemistry , Cytochrome P-450 CYP2C9/chemistry , Ginsenosides/chemistry , Heme/chemistry , Indoles/chemistry , Mycobacterium tuberculosis/chemistry , Sapogenins/chemistry , Water/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Cytochrome P-450 CYP2C9/genetics , Cytochrome P-450 CYP2C9/metabolism , Electron Spin Resonance Spectroscopy , Heme/genetics , Heme/metabolism , Humans , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/metabolism , Water/metabolism
15.
J Am Chem Soc ; 137(1): 518-24, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25490191

ABSTRACT

Plasmonic doped semiconductor nanocrystals promise exciting opportunities for new technologies, but basic features of the relationships between their structures, compositions, electronic structures, and optical properties remain poorly understood. Here, we report a quantitative assessment of the impact of composition on the energies of localized surface plasmon resonances (LSPRs) in colloidal tin-doped indium oxide (Sn:In2O3, or ITO) nanocrystals. Using a combination of aliovalent doping and photodoping, the effects of added electrons and impurity ions on the energies of LSPRs in colloidal In2O3 and ITO nanocrystals have been evaluated. Photodoping allows electron densities to be tuned post-synthetically in ITO nanocrystals, independent of their Sn content. Because electrons added photochemically are easily titrated, photodoping also allows independent quantitative determination of the dependence of the LSPR energy on nanocrystal composition and changes in electron density. The data show that ITO LSPR energies are affected by both electron and Sn concentrations, with composition yielding a broader plasmon tuning range than achievable by tuning carrier densities alone. Aspects of the photodoping energetics, as well as magneto-optical properties of these ITO LSPRs, are also discussed.

16.
ACS Nano ; 8(9): 9463-70, 2014 Sep 23.
Article in English | MEDLINE | ID: mdl-25131410

ABSTRACT

The ligand shell of colloidal nanocrystals can dramatically affect their stability and reaction chemistry. We present a methodology to quantify the dodecylamine (DDA) capping shell of colloidal zinc oxide nanocrystals in a nonpolar solvent. Using NMR spectroscopy, three different binding regimes are observed: strongly bound, weakly associated, and free in solution. The surface density of bound DDA is constant over a range of nanocrystal sizes, and is low compared to both predictions of the number of surface cations and maximum coverages of self-assembled monolayers. The density of strongly bound DDA ligands on the as-prepared ZnO NCs is 25% of the most conservative estimate of the maximum surface DDA density. Thus, these NCs do not resemble the common picture of a densely capped surface ligand layer. Annealing the ZnO NCs in molten DDA for 12 h at 160 °C, which is thought to remove surface hydroxide groups, resulted in a decrease of the weakly associated DDA and an increase in the density of strongly bound DDA, to ca. 80% of the estimated density of a self-assembled monolayer on a flat ZnO surface. These findings suggest that as-prepared nanocrystal surfaces contain hydroxide groups (protons on the ZnO surfaces) that inhibit strong binding of DDA.

17.
Biochemistry ; 53(9): 1428-34, 2014 Mar 11.
Article in English | MEDLINE | ID: mdl-24576089

ABSTRACT

The heme-containing cytochrome P450s exhibit isoform-dependent ferric spin equilibria in the resting state and differential substrate-dependent spin equilibria. The basis for these differences is not well understood. Here, magnetic circular dichroism (MCD) reveals significant differences in the resting low spin ligand field of CYPs 3A4, 2E1, 2C9, 125A1, and 51B1, which indicates differences in the strength of axial water ligation to the heme. The near-infrared bands that specifically correspond to charge-transfer porphyrin-to-metal transitions span a range of energies of nearly 2 kcal/mol. In addition, the experimentally determined MCD bands are not entirely in agreement with the expected MCD energies calculated from electron paramagnetic resonance parameters, thus emphasizing the need for the experimental data. MCD marker bands of the high spin heme between 500 and 680 nm were also measured and suggest only a narrow range of energies for this ensemble of high spin Cys(S(-)) → Fe(3+) transitions among these isoforms. The differences in axial ligand energies between CYP isoforms of the low spin states likely contribute to the energetics of substrate-dependent spin state perturbation. However, these ligand field energies do not correlate with the fraction of high spin vs low spin in the resting state enzyme, suggestive of differences in water access to the heme or isoform-dependent differences in the substrate-free high spin states as well.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Water/chemistry , Circular Dichroism , Electron Spin Resonance Spectroscopy , Ligation , Protein Isoforms/chemistry
18.
ACS Nano ; 8(1): 1065-72, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24359559

ABSTRACT

Nanomaterials exhibiting plasmonic optical responses are impacting sensing, information processing, catalysis, solar, and photonics technologies. Recent advances have expanded the portfolio of plasmonic nanostructures into doped semiconductor nanocrystals, which allow dynamic manipulation of carrier densities. Once interpreted as intraband single-electron transitions, the infrared absorption of doped semiconductor nanocrystals is now commonly attributed to localized surface plasmon resonances and analyzed using the classical Drude model to determine carrier densities. Here, we show that the experimental plasmon resonance energies of photodoped ZnO nanocrystals with controlled sizes and carrier densities diverge from classical Drude model predictions at small sizes, revealing quantum plasmons in these nanocrystals. A Lorentz oscillator model more adequately describes the data and illustrates a closer link between plasmon resonances and single-electron transitions in semiconductors than in metals, highlighting a fundamental contrast between these two classes of plasmonic materials.

19.
Nano Lett ; 14(1): 353-8, 2014 Jan 08.
Article in English | MEDLINE | ID: mdl-24328385

ABSTRACT

We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of magnitude are observed, ranging from 57 ps (radius R = 1.4 nm) to 2.2 ns (R = 3.2 nm). The data reveal a substantially stronger size dependence than found for bi- or multiexciton Auger recombination in CdSe or other semiconductor nanocrystals, scaling in proportion to R(4.3).

20.
J Am Chem Soc ; 135(50): 18782-5, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24289732

ABSTRACT

A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectroscopic signatures associated with NC n-doping, including a bleach at the absorption edge, appearance of a new IR absorption band, and Auger quenching of the excitonic photoluminescence. Although stable under anaerobic conditions, these spectroscopic changes are all reversed completely upon exposure of the n-doped NCs to air. Chemical titration of the added electrons confirms previous correlations between absorption bleach and electron accumulation and provides a means of quantifying the extent of electron trapping in some NCs. The generality of this photodoping method is demonstrated by initial results on colloidal CdE (E = S, Te) NCs as well as on CdSe quantum dot films.

SELECTION OF CITATIONS
SEARCH DETAIL
...